已知数列{an}满足a1=1,a2=3,a(n+2)=3a(n+1)-2an

已知数列{an}满足a1=1,a2=3,a(n+2)=3a(n+1)-2an

题目
已知数列{an}满足a1=1,a2=3,a(n+2)=3a(n+1)-2an
(1)证明数列{a(n+1)-an}是等比数列
(2)求数列{an}的通项公式an
(3)求数列{an}的前n项和Sn
注:n+1和n+2都为角标 )
答案
(1)a(n+2)=3a(n+1)-2an
a(n+1)=a(n-1+2)=3a(n-1+1)-2a(n-1)=3an-2a(n-1)
a(n+1)-an=2*(an-a(n-1)) 即后一项是前一项的2倍,所以{a(n+1)-an}是等比数列
通项公式=2∧n
(2)s{a(n+1)-an}=2∧(n+1)-2=a(n+1)-a1 a(n+1)=2∧(n+1)-1
an=2∧n-1
(3)求和即等比数列2∧n求和再减n
sn=2∧(n+1)-2-n
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.