设f(x)在(a,b)内连续,a<x1<x2<b,试证在(a,b)内至少有一点c,使得t1f(x1)+t2f(x2)=(t1+t2)c

设f(x)在(a,b)内连续,a<x1<x2<b,试证在(a,b)内至少有一点c,使得t1f(x1)+t2f(x2)=(t1+t2)c

题目
设f(x)在(a,b)内连续,a<x1<x2<b,试证在(a,b)内至少有一点c,使得t1f(x1)+t2f(x2)=(t1+t2)c
答案
这里t1,t2>0
证明:因f(x)在(a,b)内连续,故在[x1,x2]上连续.设f(x)在闭区间[x1,x2]上的最大值为M,最小值为m.故m《[t1f(x1)+t2f(x2)]/(t1+t2)《M,
由介值性定理,在[x1,x2]至少存在c(c当然属于(a,b)),使f(c)=[t1f(x1)+t2f(x2)]/(t1+t2)
即:t1f(x1)+t2f(x2)=(t1+t2)f(c)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.