设o为坐标原点,直线l经过抛物线x2=4y(x的平方=4y)的焦点F,且与该抛物线交于A,B两点,则向量OA与向量OB的数量积为?

设o为坐标原点,直线l经过抛物线x2=4y(x的平方=4y)的焦点F,且与该抛物线交于A,B两点,则向量OA与向量OB的数量积为?

题目
设o为坐标原点,直线l经过抛物线x2=4y(x的平方=4y)的焦点F,且与该抛物线交于A,B两点,则向量OA与向量OB的数量积为?
答案
由题意可知,直线l的斜率必存在且不为0
因为直线l经过抛物线x2=4y(x的平方=4y)的焦点F(0,1)
所以设直线l的方程为y=kx+1,与抛物线方程联立,得:
x^2-4kx-4=0
设A(x1,y1),B(x2,y2),则△=16k^2+16>0,x1+x2=4k,x1*x2=-4
所以向量OA*向量OB
=x1*x2+y1*y2
=x1*x2+(kx1+1)*(kx2+1)
=(k^2+1)x1*x2+k(x1+x2)+1
=-4(k^2+1)+k*4k+1
=-3
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.