u1=√a ,u2=√(a+√a),un=√(a+un-1),证明当n->∞,limun存在
题目
u1=√a ,u2=√(a+√a),un=√(a+un-1),证明当n->∞,limun存在
设a>0,u1=√a ,u2=√(a+√a).un=√(a+un-1),.
证明当n->∞,limun存在.
初学高数,但是看不太明白,请高手会做的,
感谢lyjhuman和小马快跑888的解答,写得都很清晰,对我帮助很大,不过只能选一个,还请谅解
答案
你给的分太高了,以后不要弄这么高的悬赏分了,
这个我可以告诉你.
只要证明单调有界就可以了.
先证有界:
(其实你自己可以先把这个极限求出来.对于un=√(a+un-1)
两边求极限,设limun=x,则x=√(a+x)
所以x=(1+sqrt(1+4a))/2))
下面就用数学归纳法证明un
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点