若f(X)=ax^2+bx+3x+b是偶函数,其定义域为[a-3,2a],则a=___,b=___

若f(X)=ax^2+bx+3x+b是偶函数,其定义域为[a-3,2a],则a=___,b=___

题目
若f(X)=ax^2+bx+3x+b是偶函数,其定义域为[a-3,2a],则a=___,b=___
答案
f(X)=ax^2+bx+3x+b是偶函数,f(X)=f(-X),化简得(2b+6)x=0,可以得出b=-3(因为是恒等于0),根据偶函数的对称性,函数在(a-3)处和2a处的函数值应该相等,f(a-3)=f(2a),化简得3a^3+6a^2-9a=0,简化后得a^3+2a^2-3a=0,a(a^2+2a-3)=0,a(a+3)(a-1)=0,所以a值有0,1,-3.但根据定义域知2a>a-3,所以a>-3,又因为二次函数,所以 a不能为0,最终得出 a=1,b=-3.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.