如图,平行四边形ABCD中,E、F是对角线BD上的两个点且DF=BE,试猜想AE与CF有何数量关系及位置关系并加以证明. 猜想: 证明:
题目
如图,平行四边形ABCD中,E、F是对角线BD上的两个点且DF=BE,试猜想AE与CF有何数量关系及位置关系并加以证明.
猜想:
证明:
答案
猜想AE=CF.AE∥CF,
证明:∵DF=BE,
∴DF-EF=BE-EF,即DE=BF,
又∵ABCD是平行四边形,
∴AD=CB,∠ADE=∠CBF,
在△ADE和△CBF中,
,
∴△ADE≌△CBF.
∴AE=CF,∠AED=∠CFB,
∴∠AEF=∠CFE,
∴AE∥CF.
根据图形可猜想AE=CF,然后由平行四边形的性质得出AD=CB,∠ADE=∠CBF,结合DF=BE可证明△ADE≌△CBF,根据全等三角形的性质可得出结论.
平行四边形的性质;全等三角形的判定与性质.
本题考查平行四边形的性质及全等三角形的判定及性质,根据平行四边形的性质得出AD=CB,∠ADE=∠CBF是解答本题的关键,另外要熟练掌握三角形全等的判定定理.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点