如图,△ABC是等边三角形,点D、E、F分别是线段AB、BC、CA上的点, (1)若AD=BE=CF,问△DEF是等边三角形吗?试证明你的结论; (2)若△DEF是等边三角形,问AD=BE=CF成立吗

如图,△ABC是等边三角形,点D、E、F分别是线段AB、BC、CA上的点, (1)若AD=BE=CF,问△DEF是等边三角形吗?试证明你的结论; (2)若△DEF是等边三角形,问AD=BE=CF成立吗

题目
如图,△ABC是等边三角形,点D、E、F分别是线段AB、BC、CA上的点,

(1)若AD=BE=CF,问△DEF是等边三角形吗?试证明你的结论;
(2)若△DEF是等边三角形,问AD=BE=CF成立吗?试证明你的结论.
答案
(1)△DEF是等边三角形.
证明如下:
∵△ABC是等边三角形,
∴∠A=∠B=∠C,AB=BC=CA,
又∵AD=BE=CF,
∴DB=EC=FA,(2分)
∴△ADF≌△BED≌△CFE,(3分)
∴DF=DE=EF,即△DEF是等边三角形;(4分)
(2)AD=BE=CF成立.
证明如下:
如图,∵△DEF是等边三角形,
∴DE=EF=FD,∠FDE=∠DEF=∠EFD=60°,
∴∠1+∠2=120°,
又∵△ABC是等边三角形,
∴∠A=∠B=∠C=60°,
∴∠2+∠3=120°,
∴∠1=∠3,(6分)
同理∠3=∠4,
∴△ADF≌△BED≌△CFE,(7分)
∴AD=BE=CF.(8分)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.