如图,△ABC中,∠A=60°,BF、CE分别是∠ABC、∠ACB的平分线,并交于点O.求证:OE=OF.

如图,△ABC中,∠A=60°,BF、CE分别是∠ABC、∠ACB的平分线,并交于点O.求证:OE=OF.

题目
如图,△ABC中,∠A=60°,BF、CE分别是∠ABC、∠ACB的平分线,并交于点O.求证:OE=OF.
答案
证明:在CB上截取CG=CF,连接GO,
由三角形内角和定理,在△ABC中,
2∠FBC+2∠ECB+60°=180°,
解得:∠FBC+∠ECB=60°,
在△OBC中,∠BOC=180°-(∠FBC+∠ECB)=180°-60°=120°,
∴∠FOE=∠BOC=120°,
在△CFO和△CGO中,
CF=CG
∠FCO=∠GCO
CO=CO

∴△CFO≌△CGO(SAS),
∴∠FOC=∠GOC,FO=GO,
由∠BOG+∠GOC=120°,
又∵∠BOG+2∠GOC=180°,
解得:∠BOG=∠GOC=∠FOC=60°
在△BEO和△BGO中,
∠EBO=∠GBO
∠EOB=∠GOB
BO=BO

∴△BEO≌△BGO(AAS),
∴EO=OG,
∴FO=EO.
根据三角形的内角和定理,得出∠FBC+∠ECB=60°,在△OBC中,即可求出∠BOC=120°,根据对顶角相等即可求出∠FDE的度数,作辅助线在CB上截取CG=CF,可证出△CFO≌△CGO(SAS),即可得出∠FOC=∠GOC,FO=GO,再可证出△BEO≌△BGO,即可得出FO=EO.

角平分线的性质;全等三角形的判定与性质.

本题考查了三角形的内角和定理,角平分线的定义,以及全等三角形的性质,难度适中.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.