设线空间中α1,α2,……,αm线性无关,且向量组α1,α2,……αm,β线性相关,则β可由α1,α2,……,αm线性表出,且表出是唯一的 这个如何证明啊?
题目
设线空间中α1,α2,……,αm线性无关,且向量组α1,α2,……αm,β线性相关,则β可由α1,α2,……,αm线性表出,且表出是唯一的 这个如何证明啊?
这是矩阵分析中的一条定理,他没有证明.
答案
设有数k1,..km.t使得k1a1+..kmam+tβ=0
如果t=0那么根据α1,α2,……,αm线性无关,所以k1=k2=...km=0所以α1,α2,……αm,β线性无关与已知矛盾 所以t≠0
所以β=-(k1a1+..kmam)/t也就是β可由α1,α2,……,αm线性表出
下面说明唯一性 设β=k1a1+...kmam 且β=l1a1+...lmam
两式相减有0=(k1-l1)a1+...(km-lm)am
根据α1,α2,……,αm线性无关 所以ki=li对任意的i=1,2.m
所以表法唯一
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点