1+2+ 3+…+(n+1)=(n+2)(n+1)/2(条).是怎样得到的?

1+2+ 3+…+(n+1)=(n+2)(n+1)/2(条).是怎样得到的?

题目
1+2+ 3+…+(n+1)=(n+2)(n+1)/2(条).是怎样得到的?
答案
1+2+ 3+…+(n+1)=s
(n+1)+n+……+3+2+1=s两式相加得 (n+1+1)+(n+2)+(n-1+3)+……+(2+n)+(1+n+1)=2s即2s=(n+2)+(n+2)+……+(n+2) (共有n+1个)2s=(n+1)(n+2)∴1+2+ 3+…+(n+1)=s=(n+1)(n+2)/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.