一道函数连续性的证明题

一道函数连续性的证明题

题目
一道函数连续性的证明题
若f(x)在x=0处连续,且f(x+y)=f(x)+f(y),对任意x,y∈(-无穷,+无穷)都成立,试证明f(x)为(-无穷,+无穷)上的连续函数
答案
当x=0时,f(y)=f(0)+f(y)
则f(0)=0
由于f(x)在x=0处连续,则有f(x)->0(x-->0)
对任意有
f(x+Δx)-f(x)=f(Δx)-->0 当Δx-->0
所以得证f(x)的连续性
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.