若函数f(x)=x3-3x+a有3个不同的零点,则实数a的取值范围是( ) A.(-2,2) B.[-2,2] C.(-∞,-1) D.(1,+∞)
题目
若函数f(x)=x3-3x+a有3个不同的零点,则实数a的取值范围是( )
A. (-2,2)
B. [-2,2]
C. (-∞,-1)
D. (1,+∞)
答案
解∵f′(x)=3x
2-3=3(x+1)(x-1),
当当x<-1时,f′(x)>0;
当-1<x<1时,f′(x)<0;
当x>1时,f′(x)>0,
∴当x=-1时f(x)有极大值.
当x=1时,
f(x)有极小值,要使f(x)有3个不同的零点.
只需
,解得-2<a<2.
故选A.
由函数f(x)=x3-3x+a求导,求出函数的单调区间和极值,从而知道函数图象的变化趋势,要使函数f(x)=x3-3x+a有3个不同的零点,寻求实数a满足的条件,从而求得实数a的取值范围.
函数零点的判定定理;利用导数研究函数的单调性;利用导数研究函数的极值.
考查利用导数研究函数的单调性和极值,函数图象的变化趋势,体现了数形结合和运动的思想方法,属中档题.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点