(高一数学)在△ABC,设内角A、B、C的对边分别为a、b、c,cos(C+π/4)+cos(C-π/4)=√2/2.

(高一数学)在△ABC,设内角A、B、C的对边分别为a、b、c,cos(C+π/4)+cos(C-π/4)=√2/2.

题目
(高一数学)在△ABC,设内角A、B、C的对边分别为a、b、c,cos(C+π/4)+cos(C-π/4)=√2/2.
1、求∠C的大小.
2、若c=2√3且sinA=2sinB,求△ABC的面积.
答案
1.cos(C+π/4)+cos(C-π/4)=2cosC·cosπ/4=√2/2∴cosC=1/2∴∠C=60°2.∵a/sinA=b/sinB∴a/b=ainA/sinB=2即a=2b又c²=a²+b²-2abcosC即12=(2b)²+b²-2×2b×b×(1/2)∴b=2a=4∴S=(1/2)absin...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.