X^4+131=Y^4 X Y都是整数 如何证明这个方程不可能成立

X^4+131=Y^4 X Y都是整数 如何证明这个方程不可能成立

题目
X^4+131=Y^4 X Y都是整数 如何证明这个方程不可能成立
答案
可以这样证明:
原方程移项得:
y^4-x^4=131
(y²+x²)(y²-x²)=131
由于131是个质数,且(y²+x²)>(y²-x²),所以只能是:
y²+x²=131
y²-x²=1
上述两式相加,得:
2y²=132
y²=66
显然,66不是完全平方数,则开方后的y必定是个无理数,同理,将两式相减可得:
2x²=130
x²=65
显然,65不是完全平方数,则开方后的x必定是个无理数.
至此,原命题成立.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.