高中不等式:已知a,b,c∈R+,求(1/a+4/b+1/c)+(a+b+c)^2的最小值
题目
高中不等式:已知a,b,c∈R+,求(1/a+4/b+1/c)+(a+b+c)^2的最小值
答案
由柯西不等知原式>=16/(a+b+c)+(a+b+c)^2
令a+b+c=t>0,f(t)=16/t+t^2
求导f”(t)=(2(t^3)-16)/(t^2)
可知,t=2时,f(t)最小=12,可求出相应a=c=1/2,b=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点