求[∫ cos(t^2)dt]的倒数
题目
求[∫ cos(t^2)dt]的倒数
积分区间是[0,根号x]
答案
令t^2=y
∫ cos(t^2)dt 积分区间是[0,根号x]
=∫(cosy/(2t))dy 积分区间是[0,x]
=∫(1/2)(cosy/(y^(1/2)))dy 积分区间是[0,x]
所以:[∫ cos(t^2)dt]的倒数
=(1/2)(cosx/(x^(1/2))
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点