已知空间四边形ABCD中,E、H分别是AB、AD的中点,F、G分别是BC、CD上的点,且CF/CB=CG/CD=2/3. 求证:(1)E、F、G、H四点共面;(2)三条直线EF、GH、AC交于一点.

已知空间四边形ABCD中,E、H分别是AB、AD的中点,F、G分别是BC、CD上的点,且CF/CB=CG/CD=2/3. 求证:(1)E、F、G、H四点共面;(2)三条直线EF、GH、AC交于一点.

题目
已知空间四边形ABCD中,E、H分别是AB、AD的中点,F、G分别是BC、CD上的点,且
CF
CB
CG
CD
2
3
答案
证明:(1)在△ABD和△CBD中,∵E、H分别是AB和AD的中点,∴EH∥..12BD又∵CFCB=CGCD=23,∴FG∥..23BD.∴EH∥FG所以,E、F、G、H四点共面.(2)由(1)可知,EH∥FG,且EH≠FG,即直线EF,GH是梯形的两腰,所...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.