已知函数f(x)=1/ax^3+1/2x^2-(2+2a)x+b.若y=f(x)在[-2,0]上存在极值点,求a的取值范围.

已知函数f(x)=1/ax^3+1/2x^2-(2+2a)x+b.若y=f(x)在[-2,0]上存在极值点,求a的取值范围.

题目
已知函数f(x)=1/ax^3+1/2x^2-(2+2a)x+b.若y=f(x)在[-2,0]上存在极值点,求a的取值范围.
答案
f'(x)=0在[-2,0]上有实数解原题等价于f'(x)=0在[-2,0]上至少有一个实数解.
f'(x)=3/ax^2+x-(2+2a),
f'(x)=0在[-2,0]上至少有一个有实数解,问题转化为对二次函数根的个数的研究问题.
正向求解太复杂,至少有一个实数解的逆向即没有实数解,求出后求补集即可.
令g(x)=f'(x)=3/ax^2+x-(2+2a),x∈[-2,0],对称轴x'=-a/6.
当a>0时,无实解即g(-2)>0,x'=-a/6<-2或g(0)>0,x'=-a/6>0,
解得a<-1,补集即a≥-1,所以a>0.
当a<0时,无实解即g(-2)<0,x'=-a/6<-2或g(0)<0,x'=-a/6>0,
解得a∈(-1,0),补集即(-∞,-1].
综上,a的取值范围即(-∞,-1]∪(0,+∞).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.