已知a∈R,求函数f(x)=x2eax的单调区间.

已知a∈R,求函数f(x)=x2eax的单调区间.

题目
已知a∈R,求函数f(x)=x2eax的单调区间.
答案
函数f(x)的导数:f'(x)=2xeax+ax2eax=(2x++ax2)eax
(I)当a=0时,若x<0,则f'(x)<0,若x>0,则f'(x)>0.
所以当a=0时,函数f(x)在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数.
(II)当a>0时,由2x+ax2>0,解得x<−
2
a
或x>0

2x+ax2<0,解得−
2
a
<x<0.

所以,当a>0时,函数f(x)在区间(-∞,-
2
a
)内为增函数,在区间(-
2
a
,0)内为减函数,在区间(0,+∞)内为增函数;
(III)当a<0时,由2x+ax2>0,解得0<x<-
2
a

由2x+ax2<0,解得x<0或x>-
2
a

所以当a<0时,函数f(x)在区间(-∞,0)内为减函数,在区间(0,-
2
a
)内为增函数,在区间(-
2
a
,+∞)内为减函数.
本题考查利用导数求函数的单调区间,这一点不是很难,但要注意对a进行分类讨论

利用导数研究函数的单调性.

本小题主要考查导数的运算,应用导数研究函数性质的方法,考查分类讨论的数学思想.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.