一个大学高等数学极限题
题目
一个大学高等数学极限题
一个极限题
lim (n->∞时) [1!+2!+3!+ +n!]/n!
就是1到n的阶乘的和与n的阶乘在 n趋向于无穷大时的比值
答案
[1!+2!+3!+ +n!]/n! =1+1/n+1/[n(n-1)]+1/[n(n-1)(n-2)]+...+1/n!<=1+1/n+1/[n(n-1)]*(n-2)
<=1+1/n+1/n;
[1!+2!+3!+ +n!]/n!>1
由迫敛性可知结果为1.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点