关于x的方程mx2+2(m+3)x+2m+14=0有两个不同的实根,且一个大于4,另一个小于4,求m的取值范围.
题目
关于x的方程mx2+2(m+3)x+2m+14=0有两个不同的实根,且一个大于4,另一个小于4,求m的取值范围.
答案
mx2+2(m+3)x+2m+14=0有两个不同的实根,且一个大于4,另一个小于4
相当于抛物线f(x)=mx^2+2(m+3)x+2m+14与x轴的交点一个在4的左边,一个在4的右边
当m>0,开口向上,有f(4)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点