求定积分 ∫ ( 1→-1) (1+x^4 tan x) dx

求定积分 ∫ ( 1→-1) (1+x^4 tan x) dx

题目
求定积分 ∫ ( 1→-1) (1+x^4 tan x) dx
答案
∫ ( 1→-1) (1+x^4 tan x) dx
=∫ ( 1→-1) 1 dx+∫ ( 1→-1) x^4 tan x dx
=-2+∫ ( 1→-1) x^4 tan x dx
∫ ( 1→-1) x^4 tan x dx
定义域对称.
被积函数为奇函数.
积分为0
∫ ( 1→-1) (1+x^4 tan x) dx=-2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.