已知定义在R上的函数f(x)满足f(-x)=-f(x),f(x-4)=-f(x),且在区间[0,2]上是减函数.若方程f(x)=k在区间[-8,8]上有四个不同的根,则这四根之和为(  ) A.±4

已知定义在R上的函数f(x)满足f(-x)=-f(x),f(x-4)=-f(x),且在区间[0,2]上是减函数.若方程f(x)=k在区间[-8,8]上有四个不同的根,则这四根之和为(  ) A.±4

题目
已知定义在R上的函数f(x)满足f(-x)=-f(x),f(x-4)=-f(x),且在区间[0,2]上是减函数.若方程f(x)=k在区间[-8,8]上有四个不同的根,则这四根之和为(  )
A. ±4
B. ±8
C. ±6
D. ±2
答案
∵f(-x)=-f(x),∴f(x)为奇函数,∵f(x-4)=-f(x),即f(x+8)=f(x),∴f(x)是周期为8的周期函数,根据f(-x)=-f(x),f(x-4)=-f(x),可得f(x-4)=f(-x),∴f(x)关于直线x=-2对称,又根据题...
由条件“f(-x)=-f(x)”函数为奇函数,由“f(x-4)=-f(x)”可得f(x+8)=f(x),即函数的周期为8,且在[0,2]上为减函数,画出示意图,由图解得答案.

抽象函数及其应用;函数的零点与方程根的关系.

本题考查了数形结合的数学思想方法.数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.