证明:对于任意的a,b,c,d属于R,恒有不等式(ac+bd)^2

证明:对于任意的a,b,c,d属于R,恒有不等式(ac+bd)^2

题目
证明:对于任意的a,b,c,d属于R,恒有不等式(ac+bd)^2
答案
要想让原式成立必须有
(ac+bd)^2≤(a^2+b^2)(c^2+d^2)
a^2c^2+b^2d^2+2abcd≤a^2c^2+b^2d^2+a^2d^2+b^2c^2
必须有a^2d^2-2abcd+b^2c^2≥0
则(ad-bc)^2≥0
上式是成立的,所以原式成立.
(a^2+b^2)(c^2+d^2)-(ac+bd)^2
=a^2c^2+a^2d^2+b^2c^2+b^2d^2-a^2c^2-2abcd-b^2d^2
=a^2d^2+b^2c^2-2abcd
=(ad-bc)^2>=0
所以(a^2+b^2)(c^2+d^2)〉=(ac+bd)^2
(ac+bd)^2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.