在正方体ABCD-A1B1C1D1中E,F分别为DD1,DB的中点,求证EF平行于ABC1D1
题目
在正方体ABCD-A1B1C1D1中E,F分别为DD1,DB的中点,求证EF平行于ABC1D1
求证EF垂直B1C
答案
连接D1B 因为E、F分别为DD1,DB的中点,所以EF为三角形DD1B的中线,所以EF平行于D1B;又因为D1B为平面ABC1D1上的线段,所以EF平行于ABC1D1.
作BC中点G,连接FG,因为FG垂直于BC、B1B,所以FG垂直于平面BB1C1C,所以平面EFG垂直于平面BB1C1C,所以EF垂直B1C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点