用矢量证明正弦定理 sinA sinB sinC

用矢量证明正弦定理 sinA sinB sinC

题目
用矢量证明正弦定理 sinA sinB sinC
答案
设ΔABC三点分别为(a1,a2)(b,0)(0,0),sinB=a2/(a1^2+a2^2)^0.5,sinC=a1/((a1-b)^2+a2^2)^0.5.这里设(a1^2+a2^2)^0.5为x,设((a1-b)^2+a2^2)^0.5为y.(我写得累死了).sinA=sin(B+C)=sinBcosC+sinCcosB =a2a1/xy+a2(b-a1)/xy=a2b/xy,sinA/BC=a2/xy,sinB/AC=a2/xy,sinC/AB=a2/xy.
证毕.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.