平面ABD⊥平面BDC,△BCD为正三角形,AB=AD,∠BAD=90°,则二面角A-CD-的正切值为
题目
平面ABD⊥平面BDC,△BCD为正三角形,AB=AD,∠BAD=90°,则二面角A-CD-的正切值为
答案
平面ABD⊥平面BDC,△BCD为正三角形,AB=AD,∠BAD=90°,则二面角A-CD-B的正切值为
作AE⊥DB交DB于E,作EF⊥DC交DC于F,连接AF.
∵平面ABD⊥平面BDC
∴AE⊥平面BDC
∴AE⊥DC
∴CD⊥平面AEF
∴CD⊥AF
∴∠AFE为二面角A-CD-B
∵AB=AD,∠BAD=90°
∴△ABD是等腰直角三角形
则:AE=DE
tan∠AFE=AE/EF=DE/EF=1/EF/DE=1/sin∠D=1/sin60°=2√3/3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点