设闭区域D:x^2+y^2≤a^2,f(x,y)为D上连续函数,且f(x,y)=√(a^2-x^2-y^2)+∫∫Df(u,v)dudv,求f(x,y)
题目
设闭区域D:x^2+y^2≤a^2,f(x,y)为D上连续函数,且f(x,y)=√(a^2-x^2-y^2)+∫∫Df(u,v)dudv,求f(x,y)
答案
首先应该知道二元函数在区域D上的二重积分结果是一个数(而不是函数),因此可设∫∫f(u,v)dudv=A,在等式f(x,y)=(a^2-x^2-y^2)^(1/2)+A两边再对区域D进行二重积分,就有∫∫f(x,y)dxdy=∫∫(a^2-x^2-y^2)^(1/2)dxdy+∫...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点