如图,在正方形ABCD的边BC上任取一点M,过点C作CN⊥DM交AB于N,设正方形对角线交点为O,试确定OM与ON之间的关系,并说明理由.

如图,在正方形ABCD的边BC上任取一点M,过点C作CN⊥DM交AB于N,设正方形对角线交点为O,试确定OM与ON之间的关系,并说明理由.

题目
如图,在正方形ABCD的边BC上任取一点M,过点C作CN⊥DM交AB于N,设正方形对角线交点为O,试确定OM与ON之间的关系,并说明理由.
答案
∵四边形ABCD是正方形,
∴DC=BC,∠DCM=∠NBC=90°,
又∵CN⊥DM,
∴∠NCM+∠CMD=90°,
而∠CMD+∠CDM=90°,
∴∠NCM=∠CDM,
在△DCM和△CBN中,
∠NCM=∠CDM
CD=CB
∠DCM=∠CBN

∴△DCM≌△CBN(ASA),
∴CM=BN,
∵四边形ABCD是正方形,
∴∠OCM=∠OBN=45°,CO=BO,
在△OCM和△OBN中,
CM=BN
∠OCM=∠OBN
CO=OB

∴△OCM≌△OBN(SAS).
∴OM=ON,∠COM=∠BON,而∠COM+∠MOB=90°,
∴∠BON+∠MOB=90°.
∴∠MON=90°,即OM⊥ON.
∴OM与ON之间的关系是OM=ON且OM⊥ON.
此题的结论是OM=ON;OM⊥ON.可以利用已知条件证明.DCM≌△CBN得CM=BN,再推出△OCM≌△OBN得OM=ON.

矩形的性质;全等三角形的判定与性质.

此题把正方形和全等三角形的知识结合起来,主要利用正方形的性质与全等三角形的判定、性质来解题.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.