关于n阶行列式

关于n阶行列式

题目
关于n阶行列式
证明:行列式的任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于0,即ai1Aj1+ai2Aj2+……ainAjn=0,i不等于j
书上的证明是把D的第j行元素换成第i行元素得到新的行列式,因为此行列式中有两行相同,故D=0;我想问的是,D的第j行元素换成第i行元素原行列式不就变了么?怎么还能证明呢?
答案
这个其实只是考察余子式的定义n阶行列式D的某一元素aij的余子式Mij指的是:在D中划去aij所在的行和列后所余下的n-1阶子式可见,余子式其实与aij所在的行和列完全无关的!(这十分重要的)对于:ai1Aj1+ai2Aj2+……ainA...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.