已知函数f(x)=8+2x-x2,g(x)=f(2-x2),试求g(x)的单调区间

已知函数f(x)=8+2x-x2,g(x)=f(2-x2),试求g(x)的单调区间

题目
已知函数f(x)=8+2x-x2,g(x)=f(2-x2),试求g(x)的单调区间
答案是g(x)在〔-1,0〕上为减函数,在〔0,1〕上为增函数,在〔1,+∞)上为减函数.
我主要想要个过程.
答案
g(x)单调递增区间为:[-1, 1];单调递减区间为:(-∞,-1),或(1, +∞)
f(x)=8+2x-x²
f(2-x²)=8+2(2-x²)- (2-x²)²
=8+4-2x²-(4-4x²+x^4)
=-x^4+2x² +8
=g(x)
若令x²=t,(t≥0)
则g(x)= -t² + 2t +8
=-(t²-2t) +8
=-(t-1)² + 9
显然,关于t的一元二次函数是一个开口向下的抛物线,
其对称轴为t=-1,根据其函数图像可得,当t≤1时,f(t)为单调递增函数;
当t≥1时,f(t)为单调递减函数.
因为,t=x² ≥0,所以,0≤t≤1时,即0≤x² ≤1时,即-1≤x ≤1时,g(x)单调递增函数;
同理,t≥1时,即x² ≥1时,即x≤-1,或x ≥1时,g(x)为单调递减函数.
原函数定义域既然为R,为什么你的答案没有区间(-∞,-1)?
还有,你的题目,是否如我所写的那样!你写的,关系根本不太清楚……
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.