在△ABC中a.b.c是角A.B.C的对边a=√3.cosA=1/3,则cos²(B+C)/2=_,b²+c²的最大值为?

在△ABC中a.b.c是角A.B.C的对边a=√3.cosA=1/3,则cos²(B+C)/2=_,b²+c²的最大值为?

题目
在△ABC中a.b.c是角A.B.C的对边a=√3.cosA=1/3,则cos²(B+C)/2=_,b²+c²的最大值为?
答案
cosA=-cos(B+C)=1/3,所以cos^2(B+C)=1/9,因为cosA=(b^2+c^2-a^2)/2bc=1/3,所以b^2+c^2=2/3bc+3,因为2bc=
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.