I是△ABC的内心,过I作DE⊥AI,分别交AB,AC于点D,E,连接BI,CI,求证
题目
I是△ABC的内心,过I作DE⊥AI,分别交AB,AC于点D,E,连接BI,CI,求证
I是△ABC的内心,过I作DE⊥AI,分别交AB,AC于点D,E,连接BI,CI,求证:
(1) CI²=CE·BC
(2) EI²=EC·BD
答案
证明:(1)∵DE⊥AI
∴∠CAI+∠AEI=90°
∵∠AEI=∠ICE+∠EIC
∴∠CAI+∠ICE+∠EIC=90°
∵I是△ABC的内心
∴∠CAI=1/2∠CAB ∠ICE=1/2∠BCA ∠IBC=1/2∠ABC
∵∠CAB+∠BCA+∠ABC=180°
∴1/2∠CAB+1/2∠BCA+1/2∠ABC=90°
∴∠CAI+∠ICE+∠IBC=90°
∴∠EIC=∠IBC
同理∠DIB=∠ICB
∵∠EIC=∠IBC ∠ECI=∠ICB
∴⊿ECI∽⊿ICB
∴IC/CE=BC/CI
∴CI²=CE*BC
(2)∵∠EIC=∠IBC ∠DIB=∠ICB
∵∠IBC=∠IBD ∠ICB=∠ICE
∴∠EIC=∠DBI ∠DIB=⊿ECI
∴⊿DIB∽⊿ECI
∴DI/DB=EC/EI
∴DI*EI=EC*BD
∵∠IAD=∠IAE ∠AID=∠AIE=90°AI=AI
∴⊿AID≌⊿AIE
∴DI=EI
∴EI²=EC*BD
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点