在正方体ABCD-A1B1C1D1中,M为DD1的中点,O为底面ABCD的中心,P为棱A1B1上任意一点,则直线OP与直线AM所成的角是_度.
题目
在正方体ABCD-A1B1C1D1中,M为DD1的中点,O为底面ABCD的中心,P为棱A1B1上任意一点,则直线OP与直线AM所成的角是______度.
答案
∵A1B1⊥面ADD1A1,AM⊂面ADD1A1,
∴A1B1⊥AM.
设面A1B1O与面ADD1A1的交线为A1F,面A1B1O与面BCC1B1的交线为B1E,则F,E为AD,BC的中点,
∴AM⊥A1F.
∵A1F∩A1B1=A1,∴AM⊥面A1FEB1,
∵OP⊂面A1FEB1,∴AM⊥OP.
∴直线OP与直线AM所成的角是90°
故答案为:90°
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点