设二次函数f(x)=x2+x,当x∈[n,n+1](n∈N*)时,f(x)的所有整数值的个数是g(n)求g(n)表达式
题目
设二次函数f(x)=x2+x,当x∈[n,n+1](n∈N*)时,f(x)的所有整数值的个数是g(n)求g(n)表达式
答案
楼主我想问一下,n∈N*是指n为整数吗?反正我是按照n取整数解的
二次函数f(x)=x^+x的对称轴为x=-1/2,其顶点为(-1/2,-1/4)
可判断出f(x)的单调性为:
当x∈(-∞,-1/2)时,f(x)是减函数;
当x∈(1/2,+∞)时,f(x)是增函数
可求出
f(n)=n^+n
f(n+1)=(n+1)^+n+1=n^+3n+2
由于n为整数,故,f(n)与f(n+1)也必为整数
当n∈(-∞,-2]时,n+1≤-1,由f(x)的单调性可以判断出,区间[n,n+1]位于抛物线的递减区域,即(-∞,-1/2)内,故f(x)在x=n处取得最大值f(n),在x=n+1处取得最小值f(n+1),由f(x)连续性可知其在[n,n+1]区间上的值域是[f(n+1),f(n)],这意味着f(x)可以取到f(n+1)到f(n)之间的任意一个值(当然也包含这个范围内的任何一个整数值);因此,f(x)所能取到的整数值个数就等于[f(n+1),f(n)]这个范围内所包含的整数个数;由于f(n)与f(n+1)都是整数,这个闭区间内所包含的整数个数为[f(n)-f(n+1)+1],代入f(n)=n^+n,
f(n+1)=n^+3n+2,可得到这个数量为-2n-1
所以,此种情况下,f(x)在[n,n+1]上所能取到的整数值个数g(n)=-2n-1
于是有:n∈(-∞,-2]时,g(n)=-2n-1 这个g(n)的分段表达式成立;
当n∈[0,+∞)时,n≥0,由f(x)单调性可以判断出,区间[n,n+1]必然位于抛物线的递增区域,即(-1/2,+∞),f(x)的最大值在x=n+1处取得,为f(n+1),最小值在x=n处取得,为f(n),从而,f(x)的值域是[f(n),f(n+1)],f(x)在区间[n,n+1]上可以取到这个值域内的所有值;于是,这个值域内的整数个数g(n),可以求出是[f(n+1)-f(n)+1](因为f(n)与f(n+1)都是整数值)=2n+3
于是可得出函数g(n)在自变量n∈[-1,+∞)时的解析式为:
g(n)=2n+3
最后只剩下一个n=-1的情况没有包含在上述两种情况中:
当n=-1时,显然此时的[n,n+1]区间就是[-1,0]区间,f(x)的对称轴x=-1/2恰好位于其内,f(x)在[-1,0]上的最小值显然是顶点值-1/4,而在f(-1)=f(0)=0处,同时取得最大值,也就是说,f(x)此时在[n,n+1]上的值域为[-1/4,0],此时f(x)的值域内只包含0这个整数点,于是,此时f(x)的整数值个数g(n)为1
综上所述,可知,当n∈整数时,g(n)的解析式为:
g(n)=/ -2n-1 , n∈(-∞,-2];
| 1 , n=-1 ;
2n+3 , n∈[0,+∞)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点