这是利用函数的单调行证明不等式

这是利用函数的单调行证明不等式

题目
这是利用函数的单调行证明不等式
证明:当x≠0时e^x>1+x.
这是书上的例题,书上是这样解的
证 设f(x)=e^x-(1+x),则f(0)=0,且f'(x)=e^x-1
由此可见,当x>0时f'(x)>0,从而f(x)在区间[0,+∞)
上单调增加.当x<0时f'(x)<0,从而f(x)在区间(-∞,0]上单调减少
所以,x≠0时都有f(x)>f(0)=0,即
f(x)=e^x-(1+x)>0 (x≠0)
我还是没看懂为什么 x≠0时f(x)>f(0)=0
前面也就是说明了f'(x)>0和<0的单调区间
这并不能说明f(x)>0
答案
要理解单调的意思.
在区间[0,+∞) 上单调增加,说明对于任意的0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.