对于函数f(x),存在x属于R,使f(x)=x成立,则称x为不动点,已知函数f(x)=ax2+(b+1)x+b-1(a0不等于)
题目
对于函数f(x),存在x属于R,使f(x)=x成立,则称x为不动点,已知函数f(x)=ax2+(b+1)x+b-1(a0不等于)
速回答
求 对任意b f(x)恒有两个相异的不动点,求a的取值范围 括号的内容是 a不等于0
答案
对任意b,令f(x)=x,得到:
ax2+(b+1)x+b-1=x
→ax^2+bx+b-1=0
对于这个方程,△=b^2-4a(b-1),
因为f(x)恒有两个相异的不动点,所以:
令△=b^2-4a(b-1)>0
①b=1时,△=b^2=1>0,符合,此时,a∈R;
②1<b<2时,由△=b^2-4a(b-1)>0,得到:
a<b^2/4(b-1),
对于b^2/4(b-1),求导:
得b(b-2)/(b-1)^2<0,即此时函数b^2/4(b-1)递减,
其最小值在b=2处取得,为:
min=2^2/4(2-1)=1,
所以,此时,a<1;
③b>2时,同样得到:
a<b^2/4(b-1),
对于b^2/4(b-1),求导可知,此时b^2/4(b-1)递增 !
所以,其最小值也在b=2处得到,同样得到:a<1;
④0<b<1时,由△=b^2-4a(b-1)>0得到:
a>b^2/4(b-1),求导判断:此时函数b^2/4(b-1)递减;
⑤b<0时,由△=b^2-4a(b-1)>0得到:
a>b^2/4(b-1),求导判断:此时函数b^2/4(b-1)递增;
由④和⑤→当b<1时,b^2/4(b-1)的最大值在b=0处取得,即:
max=0,所以此时:a>0
综上:0<a<1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点