某军舰以20节的速度由西向东航行,一艘电子侦察船以30节的速度由南向北航行,它能侦察出周围50海里(包括50海里)范围内的目标.如图,当该军舰行至A处时,电子侦察船正位于A处正南方
题目
某军舰以20节的速度由西向东航行,一艘电子侦察船以30节的速度由南向北航行,它能侦察出周围50海里(包括50海里)范围内的目标.如图,当该军舰行至A处时,电子侦察船正位于A处正南方向的B处,且AB=90海里,如果军船和侦察船仍按原速度沿原方向继续航行,那么航行途中侦察船能否侦察到这艘军舰?如果能,最早何时能侦察到?如果不能,请说明理由.
答案
能.设侦察船最早由B出发经过x小时侦察到军舰,
则
≤50,
两边平方得:(90-30x)
2+(20x)
2≤50
2,
整理得13x
2-54x+56≤0,
即(13x-28)(x-2)≤0,
∴2≤x≤
,
即当经过2小时至
小时时,侦察船能侦察到这艘军舰.
∴最早再过2小时能侦察到.
设侦察船由B出发到侦察到这艘军舰经过的时间是x小时,由题中信息可以知道军船和侦察船的行使方向互相垂直,所以军船和侦察船的距离和时间的关系式是:s2=(90-30x)2+(20x)2,s≤50时侦察船可侦察到这艘军舰,所以可以将s=50代入关系式:s2=(90-30x)2+(20x)2求时间x.
一元二次方程的应用.
本题解题的关键是能找出军船和侦察船的距离关系,利用勾股定理正确列出一元二次方程.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点