如图,在正方形ABCD中,△PBC、△QCD是两个等边三角形,PB与DQ交于M,BP与CQ交于E,CP与DQ交于F.求证:PM=QM.

如图,在正方形ABCD中,△PBC、△QCD是两个等边三角形,PB与DQ交于M,BP与CQ交于E,CP与DQ交于F.求证:PM=QM.

题目
如图,在正方形ABCD中,△PBC、△QCD是两个等边三角形,PB与DQ交于M,BP与CQ交于E,CP与DQ交于F.求证:PM=QM.
答案
证明:在正方形ABCD中,△PBC、△QCD都是等边三角形,
∴∠QCB=∠PCD=30°.(2分)
又∵BC=CD,
∴在△EBC与△FDC中,
∠ECB=∠FCD
BC=CD
∠EBC=∠FDC

∴△EBC≌△FDC(ASA),(4分)
∴CE=CF.
又∵CQ=CD=BC=CP,
∴PF=QE,(5分)
又∵∠P=∠Q,
∠QME=∠PMF,
∴△MEQ≌△MFP,
∴PM=QM.(7分)
要证明PM=QM,可以证明△PMF≌△QME,观察图形,容易发现∠P=∠Q=60°,∠PMF=∠QME,关键是找出一组边相等,再联系已知条件,发现由ASA可以证明△EBC≌△FDC,得出CE=CF,从而PF=QE.

全等三角形的判定与性质;等边三角形的性质;正方形的性质.

证题较复杂时,一般采取“两头凑”的方法,即由求证出发,看需要哪些条件,再由已知出发,能够得出哪些结论,然后选择比较,得出结果.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.