(2012•江西)已知数列{an}的前n项和Sn=kcn-k(其中c,k为常数),且a2=4,a6=8a3. (1)求an; (2)求数列{nan}的前n项和Tn.

(2012•江西)已知数列{an}的前n项和Sn=kcn-k(其中c,k为常数),且a2=4,a6=8a3. (1)求an; (2)求数列{nan}的前n项和Tn.

题目
(2012•江西)已知数列{an}的前n项和Sn=kcn-k(其中c,k为常数),且a2=4,a6=8a3
(1)求an
(2)求数列{nan}的前n项和Tn
答案
(1)由Sn=kcn-k,得an=sn-sn-1=kcn-kcn-1;   (n≥2),
由a2=4,a6=8a3.得kc(c-1)=4,kc5(c-1)=8kc2(c-1),解得
c=2
k=2

所以a1=s1=2;
an=sn-sn-1=kcn-kcn-1=2n,(n≥2),
于是an=2n
(2):∵nan=n•2n
∴Tn=2+2•22+3•23+…+n•2n
  2Tn=22+2•23+3•24+…+(n-1)•2n+n•2n+1
∴-Tn=2+22+23…+2n-n•2n+1=
2(1−2n)
1−2
-n•2n+1=-2+2n+1-n•2n+1
即:Tn=(n-1)•2n+1+2.
(1)先根据前n项和求出数列的通项表达式;再结合a2=4,a6=8a3求出c,k,即可求出数列的通项;
(2)直接利用错位相减法求和即可.

数列的求和;等比数列的通项公式.

本题主要考察数列求和的错位相减法.数列求和的错位相减法适用于一等差数列乘一等比数列组合而成的新数列.数列求和的错位相减法也是这几年高考的常考点.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.