椭圆的两个焦点F1、F2,M点是椭圆内一点,向量MF1×向量MF2=0,求椭圆离心率的取值范围?请赐教!
题目
椭圆的两个焦点F1、F2,M点是椭圆内一点,向量MF1×向量MF2=0,求椭圆离心率的取值范围?请赐教!
答案
因为向量MF1×向量MF2=0,所以它们的夹角为90度,
因此M的轨迹是以椭圆中心为圆心,以半焦距c为半径的圆;
依题设此圆内含于椭圆,所以c1,
则b^2/c^2>1,
(b^2+c^2)/c^2=a^2/c^2>2,
所以c^2/a^2=e^2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点