用罗必塔法则求limx^sinx的极限

用罗必塔法则求limx^sinx的极限

题目
用罗必塔法则求limx^sinx的极限
答案
先求对数ln(x^sinx)=sinxlnx的极限
lim sinxlnx=
lim lnx/(1/sinx) 罗必塔
=lim 1/x/(-cosx/sinx^2)
=lim -sin^2x/(xcosx) 继续罗必塔
=lim -2sinxcosx/(cosx-xsinx)
= 0/(1-0)=0
所以lim x^sinx=1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.