最简单的幂指函数就是y=x^x.说简单,其实并不简单,因为当你真正深入研究这种函数时,就会发现,在x<0时,函数图象存在“黑洞”——无数个间断点,如右图所示(用虚线表示).
在x>0时,函数曲线是连续的,并且在x=1/e处取得极小值(≈0.6922),在区间(0,1/e]上单调递减,而在区间[1/e,+∞)上单调递增,并过(1,1)点.
在x<0时,函数曲线是间断的,且有无数个间断点,同时,函数曲线以x轴准(近似)对称,函数图象夹于二平行直线y≈-1.4447和y≈1.4447之间,并在x→-∞时,双尾收敛于y=0.
此外,从函数y=x^x的图象可以清楚看出,0^0是不存在的.这就是为什么在初等代数中明文规定“任意非零实数的零次幂都等于1,零的任意非零次幂都等于零”的真正原因.
这就足以说明,幂指函数是初等函数.