设函数f(x)=x|x|+bx+c,给出四个命题: ①c=0时,y=f(x)是奇函数; ②b=0,c>0时,方程f(x)=0只有一个实数根; ③y=f(x)的图象关于(0,c)对称; ④方程f(x)=
题目
设函数f(x)=x|x|+bx+c,给出四个命题:
①c=0时,y=f(x)是奇函数;
②b=0,c>0时,方程f(x)=0只有一个实数根;
③y=f(x)的图象关于(0,c)对称;
④方程f(x)=0至多有两个实数根;
上述命题中正确的命题的序号是______.
答案
①c=0,f(x)=x|x|+bx,f(-x)=-x|-x|+b(-x)=-f(x),故①正确②b=0,c>0,f(x)=x|x|+c=x2+c,x≥0-x2+c,x<0令f(x)=0可得x=-c,故②正确③设函数y=f(x)上的任意一点M(x,y)关于点(0,c)对称的点N...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点