设m、m+1、m+2是钝角三角形的三边长,则实数m的取值范围是(  ) A.0<m<3 B.1<m<3 C.3<m<4 D.4<m<6

设m、m+1、m+2是钝角三角形的三边长,则实数m的取值范围是(  ) A.0<m<3 B.1<m<3 C.3<m<4 D.4<m<6

题目
设m、m+1、m+2是钝角三角形的三边长,则实数m的取值范围是(  )
A. 0<m<3
B. 1<m<3
C. 3<m<4
D. 4<m<6
答案
解; 由题意可得m、m+1、m+2是钝角三角形的三边长,且最大边m+2对的钝角为α,
则由余弦定理可得cosα=
m2+(m+1)2−(m+2)2
2m(m+1)
=
m−3
m
<0,求得0<m<3.
再根据任意两边之和大于第三边,可得m+m+1>m+2,∴m>1.
综上可得1<m<3,
故选B.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.