已知函数f(x)=|x-a|-lnx(a>0)
题目
已知函数f(x)=|x-a|-lnx(a>0)
(1)若a=1,求f(x)的单调区间及f(x)的最小值
(2)若a>0,求f(x)单调区间
(3)试比较 ln2^/2^+ln3^/3^+ …… +ln(n^)/n^ 与(n-1)(2n+1)/2(n+1)的大小,并证明你的结论
答案
【1解】:
f(x)=|x-1|-ln[x],x>0
当0
f(1);
当x>1,f(x)=x-1-ln[x],f'(x)=1-1/x>0,为递增函数,f(x)>f(1);
所以,f(x)的最小值为f(1)=0;
【2解】:
当a>1,由(1)可得:(0,a]递减;[a,无穷)递增;
当0若0若x≥a,则f(x)=x-a-ln[x],f'(x)=1-1/x
x≥1时,f'(x)>0,递赠;a≤x≤1时,f'(x)<0,递减;
综合得:(0,1]递减;[1,无穷)递增;
【3解】:
∑{ln[n^2]/n^2}与(n-1)(2n+1)/2(n+1)的大小?n≥2
将(n-1)(2n+1)/2(n+1)视为数列和S[n],可得a[n]=(n^2+n-1)/n(n+1)
记f(x)=ln(x^2)/x^2;g(x)=(x^2+x-1)/x(x+1),x≥2
由一阶导数f’(x)=(2-4ln(x))/x^3<0(x≥2),g’(x)=(2x+1)/(x^4+2x^3+x^2)>0(x≥2)得:
f(x)递减,g(x)递增;
而f(2)=ln4/4所以:∑f(x)<∑g(x)
即:∑{ln[n^2]/n^2}<(n-1)(2n+1)/2(n+1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点