求值域的判别式法
题目
求值域的判别式法
对于分式函数y=f(x)=(ax^2+bx+c)/(x^2+mx+n):
由于对任意一个实数y,它在函数f(x)的值域内的充要条件是关于x的方程y=(ax^2+bx+c)/(x^2+mx+n)有实数解,
把“求f(x)的值域”这问题可转化为“已知x的方程y=(ax^2+bx+c)/(x^2+mx+n)有实数解,求y的取值范围”把x当成未知量,y当成常量,化成一元二次方程,让这个方程有根.先看二次项系数是否为零,再看不为零时只需看判别式大于等于零了.
此时直接用判别式法是否有可能出问题,关键在于对这个方程取分母这一步是不是同解变形.
这个问题进一步的等价转换是“已知x的方程y(x^2+mx+n)=ax^2+bx+c)到少有一个实数解使x^2+mx+n≠0,求y的取值范围”
这种方法不好有很多局限情况,如:定义域是一个区间的.定义域是R的或定义域是R且不等于某个数的还可以用.过程用上面的就可以了.
——1.为什么'判别式大于等于零'
2.为什么'定义域是一个区间的'不能用?为什么‘定义域是R的或定义域是R且不等于某个数的’可以用?
答案
看不懂题目意思,大致猜测
判别式大于等于零不就意味着着二次方程有1个根或者2个根吗?题目说有实数解了
定义域是一个区间的话要看你求得根在不在这个区间里,判别式是针对整个方程的所有区间的
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点