如图所示,在正方形ABCD中有一点P,使得PA:PB:PC=1:2:3,求角APB度数,用勾股定理来算
题目
如图所示,在正方形ABCD中有一点P,使得PA:PB:PC=1:2:3,求角APB度数,用勾股定理来算
答案
将△PBC绕B点逆时针旋转90°至BC与AB重合,得到一个新的△AQB,可知:BQ=PB=2,QA=PC=3,∠ABQ=∠PBC,由于∠PBC+∠ABP=90°,所以∠PBQ=∠ABQ+∠ABP=∠PBC+∠ABP=90°,则△PBQ是一个等腰直角三角形,故:∠BPQ=45°,由勾股...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点