已知点P为等边△ABC外一点,且∠BPC=120°,试说明PB+PC=AP.

已知点P为等边△ABC外一点,且∠BPC=120°,试说明PB+PC=AP.

题目
已知点P为等边△ABC外一点,且∠BPC=120°,试说明PB+PC=AP.
答案
证明:延长BP至E,使PE=PC,连接CE,
∵∠BPC=120°,
∴∠CPE=60°,又PE=PC,
∴△CPE为等边三角形,
∴CP=PE=CE,∠PCE=60°,
∵△ABC为等边三角形,
∴AC=BC,∠BCA=60°,
∴∠ACB=∠PCE,
∴∠ACB+∠BCP=∠PCE+∠BCP,
即:∠ACP=∠BCE,
在△ACP和△BCE中,
AC=BC
∠ACP=∠BCE
CP=CE

∴△ACP≌△BCE(SAS),
∴AP=BE,
∵BE=BP+PE,
∴AP=BP+PC.
延长BP至E,使PE=PC,连接CE,由∠BPC=120°,推出等边△CPE,得到CP=PE=CE,∠PCE=60°,根据已知等边△ABC,推出AC=BC,∠ACP=∠BCE,根据三角形全等的判定推出△ACP≌△BCE,得出AP=BE即可求出结论.

旋转的性质;等边三角形的性质.

本题主要考查对等边三角形的性质和判定,全等三角形的性质和判定,三角形的三边关系,等式的性质等知识点的理解和掌握,此题是一个拔高的题目,有一定的难度.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.