如图,在梯形ABCD中,对角线AC、BD相交于O点,OE平行于AB交腰BC于E点,如果三角形OBC的面积是115平方厘米,求三角形ADE的面积?
题目
如图,在梯形ABCD中,对角线AC、BD相交于O点,OE平行于AB交腰BC于E点,如果三角形OBC的面积是115平方厘米,求三角形ADE的面积?
答案
因为四边形ABCD是梯形,
所以AB平行于CD.
因此可由等底等高的三角形面积相等,
得到S△DAB=S△CAB.
所以S△DAB-S△AOB=S△CAB-S△AOB,
即S△OAD=S△OBC=115平方厘米;
又因为OE平行于AB,
由等底等高的三角形面积相等,
有S△AOE=S△BOE.
同理,S△DOE=S△COE.
所以S△AOE+S△DOE=S△BOE+S△COE,
即S△AOE+S△DOE=S△OBC=115平方厘米,
因此S△ADE=S△OAD+S△AOE+S△DOE=115+115=230平方厘米.
答:三角形ADE的面积是230平方厘米.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点